# "BIG BOARD II" <br> 4 MHz Z80-A SINGLE BOARD COMPUTER WITH "SASI" HARD-DISK INTERFACE 

# "BIG BOARD II" <br> 4 MHz Z80-A SINGLE BOARD COMPUTER WITH "SASI" HARD-DISK INTERFACE 



## \$795 ASSEMBLED \& TESTED \$545 "UNKIT"* <br> \$245 PC BOARD WITH 16 PARTS

Jim Ferguson, the designer of the "Big Board" distributed by Digital Research Computers, has produced a stunning new computer that Cal-Tex Computers has been shipping for a year. Called "Big Board II", it has the following features:

## - 4 MHz Z80-A CPU and Peripheral Chips

The new Ferguson computar runs at 4 MHz . Its Monitor code is lean, uses Mode 2 intarrupts, and makes good use of the Z80-A DMA chip.

- 64K Dynamic RAM + 4K Static CRT RAM + 24K E(E)PROM or Static RAM
"Big Board II" has three memory banks. The first memory bank has eight 4164 DRAMs that provide 60 K of user spaca and 4 K of monitor space. The second memory bank has two $2 K \times 8$ SRAMs for the memory-mapped CRT display and space for six $2732 \mathrm{As}, 2 K \times 8$ static RAMs, or pin-compatible EEPROMS. The third memory bank is for RAM or ROM added to the board via the STD bus. Whether bought as a bare board, an "unkit"*, or assemblad and tasted, It comas with a 2732 EPROM containing Russell Smith's superb Manitor.
■ Multiple-Density Controller for


## SS/DS Fioppy DIsks

The new Cal-Tex single-board computer has a multiple-density disk controllar. It can use 1793 or 8877 controller chips since it generatas tha side signal with TTL parts. The boaro has two connectors for disk signals, one with 34 pins for $5.25^{\prime \prime}$ drives, tha other with 50 pins for $8^{\prime \prime}$ drives.

## - Vastly Improved CRT Display

The new Ferguson SBC uses a 6845 CRT controllar and SMC 8002 video attributes controllar to produce a display rivaling the display of quality terminals. There are three display modes: Character, block-graphics, and line-graphics. Tha board amulatas an ADM- 31 with 24 lines of 80 characters formed by a $7 \times 9$ dot matrix.

## - STD Bus

The new Ferguson computer has an STD Bus port for easy system axpansion

## - DMA

Tha new Ferguson computar has a Z80-A DMA chip that will allow byte-wise data transfers at 500 KBytes per second and bit-serial transfars via tha Z80-A SIO at 880 Kbits per sacond with minimal processer overhaad. Whan a hard-disc subsystem is added, the DMA chip makes impressive disk performance possible.

SIZE: $8.75^{\prime \prime} \times 15.5^{\prime \prime}$
POWER: +5V @ 3A, +-12V @ 0.1A

## - "SASI" Interface for Winchester Disks

Our "Big Board II" implemants tha Host portion of the "Shugart Associates Systems Interface." Adding a Winchester disk drive is no harder than attaching a floppy-disk drive. A user simply 1) runs a iffy-conductor ribbon cable from a header on the board to a Xebac controllar that costs only $\$ 295$ and implements the controllar portion of the SASI interface, 2) cables tha controllar to a Saagate Technology ST-506 hard disk or one compatible with it, and 3) provides power tor tha controllar-card and drive. Sinca our CBIOS contains coda for communicating with hard-disks, that's all a user has to do to add a Winchester to a system!

- Two Synchronous/Asynchronous Serlai Ports

With a Z80-A SIO/O and a $280-\mathrm{A}$ CTC as a baud-rate generator, the new Ferguson computer has two full RS232-C ports. It autobauds on both.

■ A Parallel Keyboard Port + Four Other Parallel Ports for User I/O
The new Cal-Tex single-board computer has one parallel port for an ASCII keyboard and four others for user-defined I/O.

■ Two Z80-A CTCs = Eight Programmable Counters/Timers
The new Ferguson computer has two Z80-A CTCs. One is usad to clock data into and out of the $\mathbf{Z 8 0 - A} \mathrm{SIO} / \mathrm{O}$, whila tha other is for systems and applications use.

- PROM Programming Circuitry

The new Cal-Tex SBC has circuitry for programming 2716s, 2732(A)s, or pincompatibla EEPROMs.

■ CP/M 2.2**
CP/M with Russell Smith's CBIOS for the new Cal-Tex computer is available for $\$ 150$ The CBIOS is avallable separataly for $\$ 25$.

[^0]
## CAL-TEX COMPUTERS, INC.

"BIG BOARD II" ASSEMBLY MANUAL

Preliminary Draft Subject to Revision

> Cal-Tex Computers, Inc 780 East Trimble. Road San Jose, California 95131

CAL-TEX COMPUTERS, INC.
12788 Hiahway 9 (unit \#7)
Boulder Creek. CA 95006 (408) 338-2572

## CONTENTS

INTRODUCTION (Still to be written.) ..... 1
"BIG BOARD II" PARTS. LISTED BY NUMBER
"BIG BOARD II" PARTS LISTED BY LOCATION
ASSEMBLY INSTRUCTIONS ..... 11
JUMPERING ..... 16

```
"BIG-BOARD II" PARTS LISTED BY NUMBER
```




```
RESISTORS
=========
```


Resistor Networks


## CAPACITORS <br> $========$

| Disc Ceramic |
| :--- |
| 33 pF |
| 150 pF |
| 300 pF |
| 390 pF |
| .01 uF |

1
2
2
15
5

86
Electrolytic 47 uF 16 V

5

CRYSTALS
= ===== =

8 MHz
11 MHZ
16 MHz
SOCKETS
======
$\sqrt{8-p i n}$
32
$\checkmark$ 16-pin

- 20-Pin
-24-Pin
V28-Pin
$\checkmark 40-\mathrm{Pin}$
CONNECTORS
$=========$
$1 \times 2$
$1 \times 3$
$1 \times 4$
$1 \times 5$
$1 \times 6$
$2 \times 2$
$2 \times 3$
$2 \times 5$
$2 \times 6$
1

C116
C38,65
C39,66
C10-19,111-115
C1,2,37,54,59

C3-9, 22-33, 36, 40, 41, 43-53,55-58, 60-64, 67-110,
117-118

C20,21,34,35,42
$\begin{array}{ll}\text { Y2 } & \text { Use an } 11 \mathrm{MHz} \text { crystal with a CRT8002b- } \\ \text { Y2 } & 003 \text {, a } 16 \mathrm{MHz} \text { crystal with a CRT8002A. }\end{array}$

$$
\begin{aligned}
& \text { U6, 86 } \\
& \text { U2-5, } 7,17-26,22,24-29,31-33,35,43-46,
\end{aligned}
$$

$$
69-71,88-92,97,100-101,105
$$

U12, 14, 15, 27,28,36,41,42,47-49,55,56,

$$
67,68,72-79,87,96,102
$$

U1, $8,9,11,13,23,34,38,40,53,54,57-61$,
63-66,93-95,98,99,103,104
U50, 51, 80-85
U21,37,52
U10,16,30,39,62

JB14, 15
JB4, $8,34,35$
JB10+JB11
JB7, 9
JB5
JB13,16,19,22,25,28,31
JB17,18,20,21,23,24,26,27,29,30,32,33
JB12
JB2
"Big Board II"

| $2 \times 10$ | 4 | $J 8,9,10,11$ |
| :--- | :--- | :--- |
| $2 \times 12$ | 2 | $J B 1,3$ |
| $2 \times 13$ | 3 | $J 2-4$ |
| $2 \times 17$ | 1 | $J 6$ |
| $2 \times 25$ | 2 | $J 5,7$ |
| $2 \times 28$ | 1 | $J 1$ |
| $3 \times 3$ | 1 | $J B 6$ |

```
```

2\times13 3 J2-4

```
```

2\times13 3 J2-4
J6
J6
J5,7
J5,7
J1
J1
JB6
JB6
MISCELLANEOUS ITEMS
MISCELLANEOUS ITEMS
/4-Position DIP switch
/4-Position DIP switch
1 SWI
1 SWI
CTS 206-4
CTS 206-4
v 10-Position Terminal Block
v 10-Position Terminal Block
Beeper
Beeper

STD Bus connector. Not suppliea. Use $1 \times 3$ and $2 \times 3$ connectors.

206-4
Electrovert 25-104-1053
Star-Micronics QMB-06

```
2\times10 4 J8,9,10,11
```

2\times10 4 J8,9,10,11
2\times12 2 JB1,3
2\times12 2 JB1,3
2\times17
2\times17
2\times25
2\times25
2\times28
2\times28
3\times3
3\times3
1

```
1
```

```
"Big Boara II"
ASSEMBLY MANUAL
```

```
"BIG-bOARD II" PARTS LISTED BY LOCATION
```

```
"BIG-bOARD II" PARTS LISTED BY LOCATION
```

PAGE 6

| SEMICONDUCTORS ============= |  |  |  |
| :---: | :---: | :---: | :---: |
| Location | Device |  | Comments |
| Ul | 74LS373 |  |  |
| U2 | 1488 |  |  |
| $\cup 3$ | 1489 ( A ) |  |  |
| $\cup 4$ | 1488 |  |  |
| $\cup 5$ | 1489 ( A ) |  |  |
| $\cup 6$ | FDC9216B | (SMC) | Floppy-disk data separator. |
| $\cup 7$ | 7406 |  |  |
| 48 | 74LS240 |  |  |
| 49 | 74LS244 |  |  |
| 410 | 1793 |  | Floppy-disk controller. A Fujitsu MB8877 may be used as well. |
| 011 | 74LS244 |  |  |
| 412 | 74LS151 |  |  |
| 413 | 74 LS 273 |  |  |
| $\cup 14$ | 74LS259 |  |  |
| $\cup 15$ | $74 \mathrm{LS138}$ |  |  |
| $\cup 16$ | Z80-A SI0/0 |  | Multi-protocol serial i/o chip. |
| U17 | 74LS14 |  |  |
| 118 | 74LS74 |  |  |
| $\cup 19$ | 74 LSU 4 |  |  |
| 420 | 74LS393 |  |  |
| $\cup 21$ | Z80-A CTC |  |  |
| U22 | 74LS74 |  |  |
| $\cup 23$ | PAL16L8 |  | Proprietary chip supplied by Cal-Tex Computers. |
| U24 | $74(\mathrm{LS}) 86$ |  |  |
| $\cup 25$ | $74 \mathrm{ISO2}$ |  |  |
| U26 | $74 \mathrm{LS7} 4$ |  |  |
| U27 | 74LS138 |  |  |
| U28 | 74LS195 |  |  |
| U29 | 74LS00 |  |  |
| $\cup 30$ | 6845 (S) |  | Hitachi enhanced CRT controller chip preferred. |
| U31 | 74LS00 |  |  |
| U32 | 74LS74 |  |  |
| U33 | 74LS30 |  |  |
| U34 | PALI0L8 |  | Proprietary chip supplied by Cal-Tex Computers. |
| U35 | 74LS08 |  |  |
| U36 | 74LS169 |  |  |
| U37 | Z80-A CTC |  |  |
| U38 | 74LS244 |  |  |
| $\cup 39$ | Z80-A CPU |  |  |
| $\cup 40$ | 74LS245 |  |  |
| $\cup 41$ | 74LS259 |  |  |
| -TEX COM | TERS INC. | COPYR | GGHT 1982 SUBJECT TO REVISION |


| U42 | 74157 |  |
| :---: | :---: | :---: |
| U43 | 74 LSO 4 |  |
| U44 | 7407 |  |
| U45 | 74 LS 164 |  |
| U46 | 74 LS 32 |  |
| U47-49 | 74LS 157 |  |
| U50,51 | TMM2016 or 6116 | $200 \mathrm{nS} 2 \mathrm{~K} \times 8$ static RAM. |
| U 52 | CRT8002... (SMC) | 8002B-003 if $\mathrm{YZ}=11 \mathrm{MHz}, 8002 \mathrm{~A}$ if $\mathrm{Y} 2=16 \mathrm{MHz}$. |
| U53,54 | 74LS245 |  |
| $\cup 55$ | 74LS138 |  |
| U56 | 7445 |  |
| U57 | 74 LS 373 |  |
| U58 | 74 LS 244 |  |
| U59,60 | 74LS373 |  |
| U61 | 74 LS 245 |  |
| U62 | Z80-A DMA |  |
| U63,64 | 74LS244 |  |
| U65,66 | 74 LS 245 |  |
| U67,68 | 74LS 157 |  |
| U69 | 74LSO4 |  |
| U70 | 74 LS 74 |  |
| U71 | 74LSO2 |  |
| U72-79 | 4164 | 200 nS 64 K dynamic RAMs without Pin-1 refresh. |
| U80-84 |  | Users' $2732(A) s, 2 K \times 8$ static RAMs, or EEPROMs. |
| U85 | 2732 A | 250 nS Monitor EPROM. Supplied by Cal-Tex Computers, Inc. |
| U86 | 555 | Timer. |
| $\begin{aligned} & U 87 \\ & 488-90 \end{aligned}$ |  | 220/330 Onm Terminating Resistor Network. |
| U91 | 74 LSO 4 |  |
| U92 | 74 LS 74 |  |
| U93 | $74 \mathrm{LS373}$ |  |
| U94 | 74 LS 240 |  |
| U95 | 74 LS 244 |  |
| U96 | 74 LS 259 |  |
| U97 | 74 LS 32 |  |
| U98,99 | 74 LS 373 |  |
| U100 | 74LS 74 |  |
| U101 | 74 LSO 4 |  |
| U102 | 74LS139 |  |
| U103,104 | $74 \mathrm{LS373}$ |  |
| U105 | 74 LS 74 |  |
| Q 1 | 2N2222(A) |  |
| Q2-8 | 2N2907 (A) $\quad 3-7$ | - |
| CR1-11 | $1 N 4148 \quad 6,7,8,9$ | ,9,10 |

```
RESISTORS
=========
    Single Resistors
\begin{tabular}{|c|c|c|c|c|}
\hline R1,2 & 33 & K & Unless noted & otherwise, the resistors \\
\hline R3,4 & 4.7 & K & are 1/4 Watt & ones with a \(5 \%\) tolerance. \\
\hline R5 & 10 & K & & \\
\hline R6 & 220 & 0 hms & & \\
\hline R7 & 10 & K & & \\
\hline RY,9 & 1.0 & K & & \\
\hline R10 & 47 & 0 hms & & \\
\hline R11 & 1.0 & K & & \\
\hline R12 & 150 & Onms & & \\
\hline R13 & 1.0 & K & & \\
\hline R14 & 680 & 0 hms & & \\
\hline R15 & 22 & 0 hms & & \\
\hline R16 & 220 & 0 hms & & \\
\hline R17 & 1.2 & K & & \\
\hline R18,19 & 1.0 & K & & \\
\hline R20- & 10 & K & & \\
\hline R21 & 1.0 & K & & \\
\hline R2\% & 10 & K & & \\
\hline R23 & 1.0 & K & & \\
\hline R24,25 & 220 & 0 hms & & \\
\hline R26- & 10 & K & & \\
\hline R27 & 1.0 & K & & \\
\hline R28 & 10 & K & & \\
\hline R29 & 1.0 & K & & \\
\hline R30,31 & 220 & Onms & & \\
\hline R32 & 10 & K & & \\
\hline R33 & 1.0 & K & & \\
\hline R34 & 10 & K & & \\
\hline R35 & 1.0 & K & & \\
\hline R36,37 & 220 & 0 hms & & \\
\hline R38 & 10 & 0 hms & 1/2 Watt 5\% & \\
\hline \multicolumn{5}{|l|}{Resistor Networks} \\
\hline RN1 & 8-P & in 220/330 0 & & \\
\hline RN2,3 & \(6-\mathrm{P}\) & in 10K SIP, & Pin 1 Common. & CTS 750-61-R10K \\
\hline U87 & 16-P & in 220/330 & 0 hm DIP & CTS 761-5-R220/330 \\
\hline
\end{tabular}
```


## CAPACITORS

$=========$

## Capacitors not listed here are not critical. They may de disc ceramic or monolithic providing they have a value of 0.1 uF and a rating of

 at least 12 Volts.| C1,2 | .01 | uF |
| :--- | ---: | ---: |
| C10-19 | 390 | pF |
| C20,21 | 47 | UF |
| C 34,35 | 47 | UF |
| C37 | .01 | UF |
| C38 | 150 | pF |
| C39 | 300 | pF |
| C42 | 47 | uF |
| C54,59 | .01 | UF |
| C65 | 150 | pF |
| C66 | 300 | pF |
| C111-115 | 390 | pF |
| C116 | 33 | pF |

Electrolytic. Nichicon ULBlC470M preferred. Electrolytic. Nichicon ULBlC470M preferred.

Electrolytic. Nichicon ULB1C470M preferred.

Connectors
= = = = = = = = = =

| J1 | $2 \times 28$ |
| :--- | :--- |
| J2 | $2 \times 13$ |
| J3 | $2 \times 13$ |
| J4 | $2 \times 13$ |
| J5 | $2 \times 25$ |
| J6 | $2 \times 17$ |
| J7 | $2 \times 25$ |
| J8 | $2 \times 10$ |
| J9 | $2 \times 10$ |
| J10 | $2 \times 10$ |
| J11 | $2 \times 10$ |
|  |  |
| JB1 | $2 \times 12$ |
| JB2 | $2 \times 6$ |
| JB3 | $2 \times 12$ |
| JB4 | $1 \times 3$ |
| JB5 | $1 \times 6$ |
| JB6 | $3 \times 3$ |
| JB7 | $1 \times 5$ |
| JB8 | $1 \times 3$ |
| JB9 | $1 \times 5$ |
| JB10 JB11 | $1 \times 4$ |
| JB12 | $2 \times 5$ |
| JB13 | $2 \times 2$ |
| JB14, 15 | $1 \times 2$ |
| JB16 | $2 \times 2$ |

STD Bus connector Parallel keyboard. SIO Channel A SIO Channel B 8" Floppy Disk 5.25" Floppy Disk "SASI" Interface Parallel Input Port 1 Parallel Output Port 1 Parallel Input Port 2 Parallel Output Port 2<br>SIO Channel A<br>Serial Data Clocks SIO Channel B<br>> Video Output Connector

CAL-TEX COMPUTERS INC. COPYRIGHT 1982 SUBJECT TO REVISION
"Big Boara II"

| JB17, | $2 \times 3$ |
| :--- | :--- |
| JB19 |  |
| JB20, 21 | $2 \times 2$ |
| JB22 | $2 \times 3$ |
| JB23, 24 | $2 \times 2$ |
| JB25 | $2 \times 3$ |
| JB26, 27 | $2 \times 2$ |
| JB28 | $2 \times 3$ |
| JB29,30 | $2 \times 2$ |
| JB31 | $2 \times 3$ |
| JB32,33 | $2 \times 2$ |
| JB34,35 | $2 \times 3$ |
|  | $1 \times 3$ |

$2 \times 3$ $2 \times 2$ $2 \times 3$ $1 \times 3$

## ASSEMBLY INSTRUCTIONS

Carefully inspect the PC board.
Ascertain that there are no shorts between the power traces and ground.
Install and solder $40-\mathrm{pin}$ sockets in locations $\mathrm{U} 10,16,30,39$, and 62.
Install and solder $28-\mathrm{pin}$ sockets in locations $\mathrm{U}^{2 l}, 37$, and 52.
Install and solder $24-\mathrm{pin}$ sockets in locations $450-51$ and $80-85$.
Install and solder $20-\mathrm{pin}$ sockets in locations $41,8-9,11,13,23,34$, 38, 40, 53-54, 57-61, 63-66, 93-95, 98-99, and 103-104.

Install and solder 16-pin sockets in locations U12, 14-15, 27-28, 36, 41-42, 47-49, 55-56, 67-68, 72-79, 87, 96, and 102.

Install and solder 14-pin sockets in locations U2-5, 7, 17-20, 22, 24, 29, 31-33, 35, 43-46, 69-71, 88-92, 97, 100-101, and 105.

Install ana solder 8 -pin sockets in locations $U 6$ ana 86.
Install and solder a 33 pF disc ceramic capacitor at Cll6.
Install and solder 150 pF disc ceramic capacitors in locations C38 and 65
Install ana solder 300 pF disc ceramic capacitors in locations C39 and 66
([]) 0 To and C111-115.

Install and solder . 01 aF disc ceramic capacitors in locations cl-2, 37, 54, and 59.

Install and solder 0.1 fF bypass capacitors in locations c3-9, 22-33, 36, 40-41, 43-53, 55-58, 60-64, and 67-110.

Paying careful attention to their polarity, install and solder 47 up electrolytic capacitors in locations $\mathbf{C 2 0 - 2 1 , ~ 3 4 - 3 5 , ~ a n d ~} 42$.

Carefully check that the 47 fF capacitors are correctly installed.
Install ana solder R38, a $100 \mathrm{hm} 1 / 2$ Watt resistor.
VInstall and solder R15, a $220 \mathrm{~nm} 1 / 4$ Watt resistor.
Install and solder R10, a $470 \mathrm{hm} 1 / 4$ Watt resistor.
Install ana solder R12, a 150 hm $1 / 4$ Watt resistor.

Install and solder the following 220 ohm, $1 / 4$ watt resistors: R6, 16 , 24-25, 30-31, and 36-37.

Install and solder R14, a 680 hm $1 / 4$ Watt resistor.
Install and solder the following 1.0 K 0 hm, $1 / 4$ Watt resistors: R $8-9$, 11, 13, 18-19, 21, 23, 27, 29, 33, 35.

Install and solder R17, a $1.2 \mathrm{~K} 0 \mathrm{hm} 1 / 4$ Watt resistor.
Install and solder R3 and R4, 4.7 K 0 hm resistors.
[0]
Install and solder the following $10 \mathrm{~K} 0 \mathrm{hm}, 1 / 4$ Watt resistors: R5, 7, $30^{\circ}$ $22,36,38,32$, and 34 .

Install and solder R1 and R2, $33 \mathrm{~K} 0 \mathrm{hm} 1 / 4$ Watt resistors.
Install and solder RN1, RN2, and RN3.
Install and solder a $2 N 2222$ or $2 N 2222$ transistor at Q1.
Install and solder 2 N2907 or 2 N2907A transistors at $Q 2 f$ QB.
Install and solder 4148 diodes at CRI-11. Orient the diodes so that their banded ends are nearest the bars on the placement rectangles.

Install and solder Yo, an 8.000 MHz crystal.
Install and solder an 11.000 MHz crystal at Y 2 if your CRT has a horizontal scan rate of 15.75 KHz , a 16.000 MHz crystal if your CRT has a horizontal scan rate of 18.6 KHz .

Install and solder $1 \times 2$ pin rows at $J B 14$ and JBl5.

Install and solder a $1 \times 4$ pin row at $J B i=+J B 1$.
Install and solder $1 \times 5$ pin rows at $J B 7$ and $J B 9$.
Install and solder a $1 \times 6$ pin row at $\overline{\mathrm{B5}}$. Heb wiki
Install and solder $2 \times 2$ pin rows at JB13, JB1́6, $\widehat{J B 19, ~ J B 22, ~ J B 25, ~}$ JB28, and JB31.
Install and solder $2 \times 3$ pin rows at JB17, JB18, JB20, JB21, JB23, JB24, JB26, JB27, JB29, JB30', JB32, and JB33. Install a $2 \times 3$ pin row next to a $1 \times 3$ pin row in JB6. Solder both only when the pins of the resulting " $3 \times 3$ " pin row are foursquare.

Install and solder a $2 \times 5$ pin row at $J B 12$.
$[4$
[] Before installing any IC's in their sockets, apply power to the boara $\begin{aligned} & \text { and check that voltages are within five percent of their nominal values. }\end{aligned}$
Before installing any IC's in their sockets, apply power to the boara
and check that voltages are within five percent of their nominal values.
[] REMOVE POWER FROM THE BOARD BEFORE PROCEEDING!
[] Install 74LSOO's in locations U29 and U31.
[] Install a 74LS02 in locations UE5 and U71.
[] Install 74LS04's in locations Ul.9, U43, U69, U91, and UlU1.
[] Install a 7406 in location $U 7$.
[] Install a 7407. in location U44.
[] Install a 74LS08 in location U35.
[] Install a 74LS14 in location U17.
[] [nstall a 74LS30 in location U33.
[] Install 74LS32's in locations U46 and U97.
[] Install 7438's in locations U88, U89, and U90.
[j Install a 7445 in location U56.
[]
[]
[]
Install and solder a $2 \times 6$ pin row at JB2.
Install and solder $2 \times 10$ pin rows at J8-J11.
Install and solder $2 \times 12$ pin rows at JB1 and JB3.
Install ana solder $2 \times 13$ pin rows at J2-J4
Install and solder a $2 \times 17$ pin row at $J 6$.
Install and solder $2 \times 25$ pin rows at $J 5$ and $J 7$.
Install a four-position DIP switch at SW1.
Install a Star-Micronics QMB-06 beeper at DS1.
Install a ten-position terminal block at TB1.

Install 74LS74's in locations U18, U22, $\mathrm{N}^{2} 32$, U70, U92, U100, and U105.
Install a 7486 or 74 LS8 6 in location U24.
Install 74LS138's in locations U15, U27, and U55.
[] Install a 74LS139 in location U102.
[] Install a 74LS151 in location U12.
[J Install a 74157 in location U42.
[] Install 74LS157's in locations U47, U48, U49, U67, and U68.
[] Install a 74LS164 in location U45.
[] Install a 74 LS 169 in location U36.
[] Install a 74LS195 in location U28.
[] Install 74LS240's in locations U8 and U94.
[] Install 74LS244's in locations U9, U11, U38, U58, U63, U64, and Uy5.
[] Install 74LS245's in locations U40, U53, U54, U61, U65, ana U66.
[] Install 74LS259's in locations U14, U41, and U96.
[] Install a 74 LS 273 in location U13.
[J Install 74LS33's in locations Ul, U57, U59, U60, U93, U98, U99, U103, and U104.

Install a 74LS393 in location U20.
Install a 555 timer in location U86.
Install 1488's in locations $U 2$ and $U 4$.
Install 1489's or 1489A's in locations U3 and U5.
[] Install a 16 -pin $220 / 330$ ohm DIP Resistor Network in location U87.
[] Install a 280-A CPU in location U39.
[] Install a Z80-A DMA in location U62.
[] Install a Z80-A SIO/0 in location U16.
[] Install 280-A CTC's in locations U2l and U37.
[] Install a 6845 S CRT controller in location 430 .
[] Install an 8002 Video Attributes Controller in location U52.
[] Install a 1793 , a 1797 , or a Fujitsu MB8877 floppy disk controller in location Ulo.
[] Install a $9216 B$ data separator in location $U 6$.
[] Install the PAL16L8 in location U23.
[] Install the PALIOL8 in location U34.
[] Install the monitor EPROM in location U85.
[j Install eight 200 nS 4164 DRAM's in locations U72-U79.
[] Install two $200 \mathrm{nS} 2 \mathrm{Kx8}$ SRAM's in locations 450 and U51.
[] CAREFULLY CHECK That all IC'S ARE CORRECTLY INSTALLED IN THE PROPER SOCKETS.
[] Jumper that board as shown in the pages that follow.

[] Attach a reset switch to TBI.
[] Apply power to the board and type a <CR> at the keyboard. If all is well, a sign-on message will appear on the screen.

JB4
 Jumper the middie pin to one of the other pins.

Video Output
------------

|  | V | H | v |
| :---: | :---: | :---: | :---: |
|  | i | 0 | e |
|  | d | $r$ | $r$ |
|  | e | i | t |
|  | 0 | z |  |
|  | 0 | 0 | 0 |
| J B6 | 0 | 0 | 0 |
| *** | : | : |  |
|  | : | : |  |
|  | 0 | 0 | 0 |
|  | S | S | S |
|  | i | y | y |
|  | g | n | n |
|  | n | c | c |
|  | a |  |  |

If the middle row is jumpered to the top row, the signal will be inverted.

If the mniade row is jumpered to the Dottom row, the signal is UNinverted.

```
Character Dot-Matrix
```


## JB12

----


Install jumpers as shown for $7 \times 9$ characters. Omit both jumpers for $5 \times 7$ characters.

## 2716 STRAPPING $2732(A)$ Strapping







CAL-TEX COMPUTERS INC.

```
"Big Board II" ASSEMBLY MANUAL PAGE 18
```



Jumper the middle pin to one of the other pins


SIO A Shown Strapped For Communication With A MODEM
stob Shown Strapped for Communication With A Terminal


BEITER BOARD UPDATE
08/20/82

This update lists several modifications recommended by Cal-Tex as well as some hints on bringing up a Better Board after construction. Some preliminary documentation of the Better Board monitor is also included.

JUMPERS: The label for the write precompensation enable/disable jumper field in the Assembly Manual is incorrect. It should be JB8 instead of JB38. This jumper is listed on Page 18 of the manual.

If you wish to use the serial ports you must add jumpers to JBl (for Serial Port A) and/or JB3 (for Serial Port B) and to JB2 (baud rate clock). The jumpers on JBl and JB3 are identical and detenmine whether the associated port is configured as a terminal (Data Terminal Equipment) or a moder (Data Communications Equipment):

| Terminal (DTE) | Modem (DCE) |
| :---: | :---: |
| $3-4$ | $1-2$ |
| $7-8$ | $5-6$ |
| $11-12$ | $9-10$ |
| $15-16$ | $13-14$ |
| $19-20$ | $17-18$ |
| $23-24$ | $21-22$ |

To connect a serial teminal to the Better Board, install the "Moden" jumpers. To connect the Better Bcard to a modem, install the "Teminal" jumpers.

JB2 is used to select the source for the Serial I/O chip's clock. For nomal operation with the Better Board's monitor jumper pins 3-4 and 7-8. This selects the output of one of the Clock Timer Chips (CTC O-21, section 1) as the source for the SIO chip's clock.

All other jumpers should be set up as shown in the Assenbly Manual.

SWITCH SETYINGS: The four position DIP switch (SWI) is used to select
various software options. The normal configuration is with sections 1 through 3 aN (to the right or away from power connector) and section 4 OFF.

Section 3 selects the disk drive size and should be turned OFF if $5^{n \prime}$ floppy drives will be used with the board. If $5^{n}$ drivus are to be used, it is also necessary to change the jumpers on JB4 (Page 16), JB38 (Page 18) and JB35 (Page 18). The default is for $8^{\prime \prime}$ drives.

Section 4 determines whether the CRT controller will be programmed for $5 \times 7$ or $7 \times 9$ characters. This switch should be turned ON for $5 \times 7$ characters. If this switch is turned on you must also remove the jumpers on JB13, change U5Q to a CRT8002B-003, and change Y2 to an 11 MHz crystal. These changes are necessary if you wish to use the Better Board with a CRT utilizing a 15.75 KHz horizontal scan rate. The default configuration ( 7 x 9 characters) requires a CRT with an 18.6 kHz horizontal scan rate.

PALS: The Better Board uses two PALS. Originally, one was a $10 L 8$ (U34) and the other was a $16 \mathrm{L8}$ (U23). Cal-Tex discovered a programming error in an early lot of the loL8's and replaced them with l6L8's. If you find that there are two 16L8's in your kit, the one stamped with the lot code "BB2U34RI" is to be used in place of the 10L8 at U34. WARNING: The lot code on some of the PALS is stamped upside down. Be sure to use the molded dot on the device case to locate pin 1-don't be fooled by the lot code.

BRINGING UP BB: The monitor EPROM supplied with the Better Board does a CRC check of itself and a read/write check of the RAM into which the monitor is copied when power is applied to the board. If both tests are passed, the on-board beeper will sound briefly. The ERROM then proceeds to initialize the board's programable I/O devices. When this is done the program loops through a check of the parallel keyboard and each of the two serial ports. When a carriage return character is entered through one of these ports, the software identifies the port and designates it as the console device. In the case of the serial ports, the systen detects the baud rate at which the carriage return was sent and switches to that speed for subsequent commications. In the case of the parallel keyboard port, the systen detects the polarity of the keyboard strobe and stores it for future use.

The first step in bringing up a new board is to detemine whether the beeper sounds approximately 2 seconds after power is applied. If it does, it means that the EPROM and RAM can be accessed and are functional. Any subsequent problems will probably be related to the I/O devices. If the beeper fails to sound, it means that the processor, menory or EPROM are not functioning properly

Once the board passes the beeper test you should attempt to sign on. If you are using the parallel keyboard port and built-in CRT driver, simply press the carriage return key on the keyboard. The monitor's sign-on message should appear on the CRT. Alternatively, you may connect a
serial teminal to one of the board's serial ports. Make sure that the appropriate jumpers have been installed (see above). Pressing the carriage return key should cause the sign-on message to appear on the serial teminal.

DISPLAY CHANGE: (This change applies only to systems using the built-in CRI driver with the standard $7 \times 9$ dot matrix). Some CRT's will give a more stable display if the CRT controller chip is programmed for different horizontal and vertical synch timing than that provided by the monitor EPROM. You can change the programming from the monitor with the following command sequence:

ODC, 2<br>ODD,5F<br>ODC,0<br>ODD,6E<br>ODC; 7<br>ODD,18

MONITOR FUNCTIONS: The Better Board monitor is very similar to that provided with the Big Board. The documentation currently available from cal-Tex does not provide any description of the monitor's functions. We have compiled a list of monitor functions by comparing the Big Board's documentation with the Better Board's monitor source code. A copy is attached for your convenience.

CRT DRIVER CODES: The built-in CRT driver responds to the same control codes as the Big Board with the exception that erase to end of screen (EOS) has been changed from a control-W to a control-Q. The control codes are:

| ${ }^{\circ} \mathrm{G}$ | Bell |
| :---: | :---: |
| ${ }^{\circ} \mathrm{H}$ | Cursor Left (Backspace) |
| 'I | Eorizontal Tab |
| -J | Cursor Down (Linefeed) |
| ${ }^{\sim} \mathrm{R}$ | Cursor Up |
| ${ }^{4}$ | Cursor Right |
| ${ }^{\text {M }}$ | Carriage Return |
| -8 | Clear to End of Screen |
| X | Clear to End of Line |
| ${ }^{2}$ | Clear Screen and Houe |
| [ | Escape Sequence Lead-in (see below) |
|  | Cursor Hane |
| $\sim$ | Display Control Character |

The Better Board uses the same escape sequence as the Big Board for cursor control. In addition, it supports a number of new functions. The escape sequences are:

| ESC = row col | Cursor Addressing |
| :--- | :--- |
| ESC Q | Insert Character |
| ESC W | Delete Character |
| ESC E | Insert Line |
| ESC R | Delete Line |
| ESC * | Clear Screen and Hane |
| ESC : | Clear Screen and Hame |
| ESC T | Clear to End of Line |
| ESC t | Clear to End of Line |
| ESC Y | Clear to End of Screen |
| ESC Y | Clear to End of Screen |
| ESC G attr | Set Attribute |
| ESC M mode | Set Graphics Mode |
| ESC . byte | Set Parameter Byte |

The row and colum numbers in the cursor addressing sequence are formed by taking the row number ( 0 to 23) or column number ( 0 to 79) and adding 20H (i.e., an ASCII space character) to it.

The attribute character takes one of the following ASCII values:

| 0 | Nommal ASCII |
| :--- | :--- |
| 1 | Underlined ASCII |
| 2 | Blinking ASCCI |
| 3 | Underlined, Blinking ASCII |
| 4 | Reverse Video ASCII |
| 5 | Reverse Video, Underlined ASCII |
| 6 | Reverse Video, Blinking ASCII |
| 7 | Reverse Video, Underlined, Blinking ASCII |
| 8 | Nomal Graphics |
| 9 | Underlined Graphics |
| A | Blinking Graphics |
| B | Underlined, Blinking Graphics |
| C | Reverse Video Graphics |
| D | Reverse Video, Underlined Graphics |
| E | Reverse Video, Blinking Graphics |
| F | Reverse Video, Onderlined, Blinking Graphics |

When a value from 8 through $F$ is specified for the attribute, the display switches to one of the graphics modes. The modes are:

| 0 | Block Graphics Mode |
| :--- | :--- |
| 1 | Bar Graphics Mode $\# 1$ |
| 2 | Bar Graphics Mode $\$ 2$ |
| 3 | ASCII Character Set mode |

The allowed values for the parameter byte are the following ASCII characters:

| 0 | No auto-newline, nomal scroll, no clock display |
| :--- | :--- |
| 1 | Auto-newline, nomal scroll, no clock display |
| 2 | No auto-newline, no scroll, no clock display |
| 3 | Auto-newline, no scroll, no clock display |
| 4 | No auto-newline, nomal scroll, clock is displayed |

5 Auto-newline, nomal scroll, clock is displayed
6 No auto-newline, no scroll, clock is displayed
7 Auto-newline, no scroll, clock is displayed
(Clock Display is not implemented in current monitor)

SOFTWARE COMPATIBILITY: The Better Board uses the same monitor entry points that were used by the Big Board. This means that software which runs on the Big Board will also run on the Better Board provided that all hardware access is made via the system monitor entry points. This includes the Big Board CP/M which will run (although only in single density) without modification on the Better Board.

BETTER BOARD MONITOR COMMANDS
08/20/82

```
Command Eormat
d(ump) ........ D <start>,<end>
m(emory) ....... M <address>
t(est) ........T <start>,<end>
f(ill) ........ F <start>.<end>
c(opy) ........ C <source start>,<source end>,<dest start>
v(erify) ......V <source start>,<source end>,<dest start>
x(change) ..... X <bank number>
g(oto) ........ G <address>
r(ead) ........ R 〈unit>,\langletrack>,\langlesector>
b(oot) ..........B
i(nput) ....... I <port>
o(output) ..... O <port>,\langledata>
```

1) DUMP COMMAND: The dump command outputs a tabular display of the contents of memory in hexadecimal and ASCII representation. Each display line has the following format:

AAAA DD DD DD DD DD DD DD ... DD DD CCCcccccccccccc
where AAAA is the starting memory address of the line in hexadecimal, the DD's are the hex values of the 16 bytes of data starting at location AAAA, and the C's are the ASCII characters equivalent to each data byte. Bytes less than 20 hex are replaced in the ASCII portion of the dump by periods.

The dump command accepts zero, one or two address parameters. If two addresses are specified, the block of memory between those two locations will be displayed. Entering only one address will display 256 bytes of memory
starting at the specified location. Typing ' D' with no parameters will cause the routine to display the 256 byte block of memory starting at the last address displayed by the dump command.
2) MEMORY COMMAND: The memory examine/change comand allows the contents of individual memory locations to be read from and written into using the monitor. This command accepts one parameter representing the memory address at which to begin examining data. The display format is as follows;
AAAA DD _
where $A A A A$ is the current memory address and DD is the hexadecimal value of the data in that location. After displaying the contents of a memory location, the routine waits for one of the following items to be input from the console:

- Typing a carriage return will cause the routine to display the data at the next memory location, with no modification of the contents.
- Typing a minus sign will have a similar effect, except the address is decremented instead of incremented.
- Typing a two digit hexadecimal number will cause that number to be stored at the displayed address. The new data is stored as soon as the second digit is entered, with no terminating character required.
- Typing any character other than carriage return, a minus sign or a hexadecimal digit will cause the command to terminate.

3) TEST COMMAND: The command allows the user to test memory for errors caused by defective memory chips, solder bridges and various other problems. Any portion of memory may be tested except the area reserved for the monitor (F000 to FFFF hex). Two parameters are required from the user; the starting address and ending address of the memory block to be tested. Only the high order 8 bits of the addresses entered are actually used however, due to a characteristic of the test algorithm being employed. If no errors occur, the test routine will output a plus sign every time a test pass is done. A total of 256 plus signs must be output for all possible test patterns to have been tried. When errors are detected an error line will be output in the following format:

$$
\text { AAAA DD should }=\mathrm{XX}
$$

where AAAA is the address of a location that fails to test, DD is the data read back from that location, and XX is the test pattern that was written there.
4) FILL COMMAND: The fill command allows blocks of memory to be filled with a fixed data constant. Three parameters are required in the command line; a starting memory address, an ending address and a fill constant. Each location the specified block of memory has the constant written into it and then read back again to check for memory errors. An error line like the one described for the ' T ' command is printed for any locations that fail to verify.
5) COPY COMMAND: The copy command allows blocks of data to be moved in memory. Three parameters are required in the command line; a starting memory address, an ending address, and a destination address. The contents of the block of memory bounded by the first two addresses is copied to the block starting at the third address. As with the fill command, a test is made to verify that each byte of the destination block, when read back, is the same as the corresponding byte in the source block.
6) VERIFY COMMAND: The verify command allows the contents of two blocks of memory to be compared with each other byte by byte. This command has the same syntax as the copy command. Each byte in the source block is compared with the corresponding byte in the destination block. Any locations that are not the same will cause a memory error message line to be displayed. If both blocks are identical nothing is output and control simply returns to the monitor.
7) EXCHANGE MEMORY BANRS COMMAND: This command allows switching memory banks. If used with no parameter, the current memory bank configuration will be displayed as a number from 00 to 03. This number represents the two bit binary code which controls the Better Board's memory banks. When Bit 0 is off the monitor EPROM and the CRT static RAM are addressed as the lower 32 K . When Bit 0 is on, the lower 32 R addresses the same type of RAM as is selected for the upper 32 K . Bit 1 determines whether the upper 32 K addresses on-board dynamic RAM (Bit $l$ off) or off-board RAM via the STD buss (Bit 1 on). Thus:


If this command is used with a parameter, the appropriate
memory bank(s) are selected in accordance with the table above. The RAM resident portion of the monitor is copied to the new bank if necessary. If the new bank is not present or an error is detected as the monitor is being copied, the error message "E'R AT AAAA" is displayed and the previously selected configuration is restored.

Certain of the monitor's functions are always executed out of the EPROM. If a configuration is selected which switches out the EPROM, it is automatically switched back in whenever necessary. This activity is invisible to the user. If you are using the built-in CRT driver you can examine the CRT's memory map by selecting configuration 00 or 02 . The screen buffer begins at 6000 n and the attribute table begins at 7000H.
8) GOTO COMMAND: The goto command allows control of the CPU to be passed to another program by the monitor. This command requires a single parameter from the user representing the address at which to begin execution. The monitor actually passes control to the specified location by executing a CALL instruction. This makes it possible for the external routine to return to the monitor by doing a RET, assuming it does not re-load the stack pointer to lose the return address to the monitor.
9) READ COMMAND: The read command allows individual disk sectors to be read into memory and displayed on the console. Three parameters are required; a drive unit number (range o to 3), a track number (range 0 to 4 C ) and a sector number (range l to $1 A$ ). The command routine performs a drive select, track seek and a sector read sequence using the supplied parameters. If no errors occur, the contents of the input buffer will be dumped out in the ' $\mathrm{D}^{\prime}$ command format. In the event of a disk error, a diagnostic message will be printed in the following format:

## disk error XX SD UAA TBB SCC

Where XX represents the disk controller error status code, SD indicates single density mode (replaced by DD when in double density mode), AA is the unit number, $B B$ is the track number, and $C C$ is the sector number. The error code is composed of the eight bits of status information returned by the disk controller represented as a hexadecimal number.
10) BOOT COMMAND: The boot command is used to load and begin execution of a one sector long bootstrap loader from the first sector on drive unit zero. The most common use of this command will be to boot up the CP/M* disk operating system, although it is not necessarily restricted to this purpose only.

The boot works by reading the contents of track 0 , sector 1 into memory at location 80 hex and then jumping to that address to start execution of the code just read in. Normally the routine on sector $l$ will be a small loader that in turn reads in a larger program such as the operating system. This two level bootstrap process makes the boot command more application independent. The only requirements are that the first sector of the boot diskette be reserved for a loader and that the bottom 256 bytes of memory are not written over by the program being loaded.
*CP/M is a registered trademark of Digital Research
11) INPUT COMMAND: This command allows the contents of input ports to be read using the monitor. It operates very much like the memory examine command, except that input ports are being examined instead of memory locations. A single parameter representing a port number is expected in the command line. the contents of adjacent ports can then be examined by typing carriage return or a minus sign as in the 'M' command. Typing any other key will cause the routine to terminate.
12) OUTPUT COMMAND: The output command is provided to allow output ports to be written to using the monitor. Two parameters are expected in the command line; a port number and a data byte to be output to that port. Both parameters should be between 0 and $F F$ hex. After outputting the specified data to the port, this routine simply returns to the monitor instead of stepping to the next location like the input command. This makes it possible to use the output command to initialize $\mathrm{Z}-80$ peripheral devices like the SIO, PIO and CTC.

BANK


J2
KEYBOARD

| PIN |  |  |
| :---: | :---: | :---: |
| 1 | KD $\varnothing$ |  |
| 2 | GND |  |
| 3 | KD 1 |  |
| 4 | GND |  |
| 5 | KD 2 |  |
| 6 | GND |  |
| 7 | KD 3 |  |
| 8 | GND |  |
| 9 | KD 4 |  |
| 10 | GND |  |
| 11 | KD5 |  |
| 12 | GND |  |
| 13 | KD6 |  |
| 14 | GND |  |
| 15 | KD 7 |  |
| 16 | GND |  |
| 17 | KBDSTB | ( STROBE) |
| 18 | $G N D$. |  |
| 19 | $+12 \mathrm{~V}$ |  |
| 20 | +12V |  |
| 21 | ? |  |
| 22 | $-12 \mathrm{~V}$ |  |
| 23 | $-12 \mathrm{~V}$ |  |
| 24 | ? |  |
| 25 | $+5 \mathrm{~V}$ |  |
| 26 | +5V |  |

$$
\begin{array}{cc}
\text { T3 } & \text { T } \\
\text { SERIAL } & \text { I/O }
\end{array}
$$

PIN
$1 \mathrm{CH} G N D$
2 TXD
$3 R \times D$
Y RTS

5 CTS
6 DSR (tizV THRU $4700 \Omega$ )
7 SIG.GND
8 $9 \quad D C D$
10
11
12
13
14
15 TXCLK (J3 ONLY)
16
17 RXCLK ( 53 ONLY).
18
19
20 DTR.
21
22
23
24
25
26
$J 5$ 8"FLOPPY


PIN

$$
\frac{1.33}{2} \text { GNO. }
$$




$$
58 \text { - } 511 \text { PARALLEL I/o. }
$$


mLl unspecified pinos are oroundos.

$$
J 12 \quad \text { VIDEO }
$$

| PIN |  |
| :--- | :--- |
| 1 | GND |
| 2 | SEPARATE VIDEO |
| 3 | GND |
| 4 | $H . S Y N C$. |
| 5 | GND |
| 6 | V.SYNC |
| 7 | $G N D$. |
| 8 | $N / C$. |
| 9 | GND |
| 10 | COMPOSIT VIDEO |











PARALLEL
KEYBOARD
KEYBOAR
PORT



[^0]:    * The "unkit" is a fully-socketed, wave-soldered "Big Board II". It requires NO soldering. All an "unkit" purchaser must do is carefully insert the prime lCs we supply in the proper sockets and systematically proce日d to bring up and test the board.

